
Feature Numpy	
import numpy as np

R
Random number # Uniform distribution

np.random.rand(4)
np.random.randint(1,5,2)
np.random.randint(1,5,size=(2,3))
np.random.uniform(1,5,(2,3))

seed
np.random.seed(100)

Normal distribution
np.random.randn(5)

Uniform distribution
runif(4)
sample(1:5, 2, replace = TRUE)
matrix(sample(1:5, 6, replace = TRUE), 2, 3)
matrix(runif(6, min = 1, max = 5), 2, 3)

seed
set.seed(100)

Normal distribution
rnorm(5)
rnorm(5, mean = 10, sd = 2)

Create # 1d
np.array([1,2,3]) //or tuple
2d
np.array([[1,2,3],[4,5,6]])
np.arange(1,7).reshape((2,3))

a=np.arange(1,10)
np.arange(1,10,2.5)
np.arange(1,11).reshape(2,5)
np.linspace(1,10,6)
np.zeros(4)
np.zeros((2,3))
np.ones((2,3))
np.full((2,3),1)
np.eye(3) #eye means I (identity)

1d
a <- c(1,2,3)
2d
a <- rbind(c(1,2,3), c(4,5,6))
a <- matrix(1:6, nrow, ncol, byrow = T)
a <- array(1:6, dim = c(2,3))

a=1:9
seq(1,10,by=2.5)

seq(1,10,length.out=6)
rep(0,4)
matrix(0,2,3)
matrix(1,2,3)
matrix(1,2,3)
diag(3)

Update (add) np.append(a,10)
np.append(a,[20,30])
np.insert(a,1,40)

a <- c(a,10)
a <- c(a,20,30)
a <- append(a,40,after=1)

Page of 1 18

Update a[0]=100
a[:2]=100
a.astype(np.float64)

a[1]<-100
a[1:2]<-100
as.double(a)

Query a.ndim
a.shape
a.size
a.dtype

length(dim(a))
dim(a)
length(a)
typeof(a)

Create boolean
index

a>=60
(a>=60) & (a<=100)

a.any()
a.all()

a >= 60
(a >= 60) & (a <= 100)

any(a)
all(a)

Indexing # 5 index types:
1 normal index
a[1] # second element/row

2 slicing
a[1:2]
a[2:]
a[:9:2]

3 comma separated
a[0,1] or a[:,2]

4 boolean
a[[True, False, True]]

5 fancy
a[[0,2]]
pairwise index to select eles
a[[0,2],[3,4]]
scattered selection to select
rows and cols
a[np.ix_([0, 2], [3, 4])]

1
a[2], a[2,]

2 slicing
a[2:3], a[2:3,]
a[3:length(a)], a[3:nrow(a),]
a[seq(1,length(a),2)], a[seq(1,nrow(a),by=2),]

3
a[1,2], a[,3]

4
a[c(TRUE, FALSE, TRUE)]

5
a[c(1,3)]
pairwise index
a[cbind(c(1,3),c(4,5))]
scattered selection
a[c(1,3),c(4,5)]

Page of 2 18

Set operations s={1,1,2,2,3}

np.unique([1,1,2,2,3])
vs, cnts=np.unique(a,
return_counts=True)

b=np.isin(a, [3,4,6])
np.where(b) # find index
a[b] # find values

unique(c(1,1,2,2,3))

t <- table(c(1,1,2,2,3))
vs <- names(t)
cnts <- as.vector(t)

b <- a %in% c(3,4,6)
which(b) # find index
a[b] # find values

Dictionary d={‘a’:1, ‘b’:2, ‘c’:3}
d[‘a’]

d=list(a=1,b=2,c=3)
d[[‘a’]]

Statistics a.min()
a.max(axis=1)
a.sum()
a.mean()
a.cumsum()
a.argmax() # index of max ele
a.argmax(axis=0) # column-wise
a.argmax(axis=1) # row-wise

ufunc (Universal functions)
np.sum(a)
np.maximum(a,b)
np.sum([a,b])

min(a)
apply(a,1,max)
sum(a)
mean(a), rowMeans(a)
cumsum(as.vector(a))
which.max(a) # index of max ele
apply(a,2, which.max)
apply(a,1, which.max)

sum(a)
pmax(a,b)
sum(c(a,b))

Operations # +,-,*,/,**, %
a**2
7%2

+,-,*,/,^,%%
a^2
7%%2

Page of 3 18

Conditional
expression

x=[1,2,3,4]
y=[6,7,8,9]
condition=[True,False,True,True]
np.where(condition, x,y)

np.where(a>10,10,0)
np.where(a>10,10,a)

x<-c(1,2,3,4)
y<-c(6,7,8,9)
condition=[T,F,T,T]
ifelse(condition, x, y)

ifelse(a > 10, 10, 0)
ifelse(a > 10, 10, a)

if statement condition <- c(TRUE, FALSE, TRUE, TRUE, FALSE)

l <- c()
for (i in seq_along(condition)) {
 if (condition[i]) {
 l <- c(l, x[i])
 } else {
 l <- c(l, y[i])
 }
}

Page of 4 18

stacking/concatenation # 1d
a=np.array([1,1,1])
b=np.array([2,2,2])
by row
np.vstack((a,b)) # same as
np.row_stack((a,b))

by column
np.column_stack((a,b))

by concatenation
np.hstack((a,b)) # same as
np.concatenate((a,b))

2d
a=np.array([[1,1,1],[2,2,2]])
b=np.array([[3,3,3],[4,4,4]])
by row
np.vstack((a,b)) # same as
np.concatenate((a,b),axis=0)

by column
np.hstack([a,b]) # same as
np.concatenate((a,b),axis=1)

1d
a <- c(1,1,1)
b <- c(2,2,2)

by row
rbind(a, b)

by column
cbind(a, b)

by concatenation
c(a, b)

2d
a <- matrix(c(1,1,1,2,2,2), nrow=2,
byrow=TRUE)
b <- matrix(c(3,3,3,4,4,4), nrow=2,
byrow=TRUE)

by row
rbind(a, b)

by column
cbind(a, b)

split # equal split (horizontal)
np.hsplit(a,2)
or if array exact divisibility
np.split(a,2,axis=1)

equal split (vertical)
np.vsplit(a,2)
or if array exact divisibility
np.split(a,2,axis=0)

not equal split
np.array_split(a,3,axis=1)

p1 <- a[, 1:floor(ncol(a)/2)]
p2 <- a[, (floor(ncol(a)/2)+1):ncol(a)]

p1 <- a[1:(nrow(a)/2),]
p2 <- a[(nrow(a)/2+1):nrow(a),]

cols <- split(1:ncol(a), cut(1:ncol(a), 3,
labels=FALSE))
parts <- lapply(cols, function(idx) a[, idx,
drop=FALSE])

Page of 5 18

Feature
Matplotlib	

import
matplotlib.pyplot as

plt

R base graphics
+ plotrix

R grid graphics	
(ggplot)

Show
plot

plt.show() # need for
pyCharm

Line simple line x=[1,2,3,4,5]
y=[5,7,5,8,15]
plt.plot(x,y)

x=c(1,2,3,4,5)
y=c(5,7,5,8,15)
plot(x,y,type=‘l')

label plt.plot(x,y,label=‘y’) no need
linewidth plt.plot(x,y,linewidth=

3)
plot(x,y,type=‘l',lwd=3
)
if plot second line
lines(x, y1, type="l")

marker, color and
line style

plt.plot(x,y,’or--') plot(x, y,
 type="b", # both
points and lines
 pch=1, # circle
marker
 col=“red", # red color
 lty=2) # dashed
line

legend plt.legend()

plt.legend(loc=[1,0.02]
)
loc=‘bottom left'

legend(“topleft”,
 legend=c("y",
"y1"),

col=c("blue","red"),
 lty=c(1,2))

R base not support
‘loc’
legend(x,y,…)

grid plt.grid(True) grid()

Page of 6 18

style scheme plt.style.available
plt.style.use(‘fivethir
tyeight’)

No style scheme

title plt.title(‘rel x and
y’)

plot(x,y,main=“rel x
and y”)

axis labels plt.xlable(‘X’)
plt.ylable(‘Y’)

plot(x,y,xlab=‘X’,ylab=
‘Y’)

scale plt.xscale('log')
plt.yscale(‘log')

plot(x, y, log = "xy")

Fill area plt.plot(x, y)

plt.fill_between(x, y)

same as
plt.fill_between(x, y,
y2=0)

alpha
plt.fill_between(x, y,
alpha=0.5)

for each condition,
set different colors
plt.plot(x, y)
y2=y.mean()

plt.fill_between(x, y,
y2, where=(y>y2),
interpolate=True)

plt.fill_between(x, y,
y2, where=(y<=y2),
interpolate=True)

plot(x, y, type = "l")

polygon(c(x, rev(x)),
 c(y, rep(0,
length(y))),
 col = “blue")

plot(x, y, type = "l")

polygon(c(x, rev(x)),
 c(y,
rep(y_mean,
length(y))),
 col = “blue")

for each condition,
set different colors

No good support

step-like lines plt.plot(x,
drawstyle='steps-post')

Page of 7 18

Bar simple bar x=[10,20,30,40,50]
y1=[5,7,5,8,20]
plt.bar(x,y1)

x <- c(10,20,30,40,50)
y1 <- c(5,7,5,8,20)

barplot(names.arg=x,y1)
width plt.bar(x,y1,width=3)

label plt.bar(x,y1,label='y1'
)

multiple bars x=np.array([10,20,30,40
,50])
y1=[5,7,5,8,20]
y2=[6,7,9,3,6]
width=3
plt.bar(x-w/
2,y1,width=w)
plt.bar(x+w/
2,y2,width=w)

x <- c(10,20,30,40,50)
y1 <- c(5,7,5,8,20)
y2 <- c(6,7,9,3,6)

mat <- rbind(y1, y2)

barplot(mat,
names.arg=x,
beside=TRUE,

col=c("skyblue","orange
"),

legend.text=c("y1","y2"
))

horizontal bar w=3
plt.barh(x,y1,height=w)

barplot(…, horiz=TRUE,
…)

tick locations
and labels

x=[10,20,30,40,60]
y1=[5,7,5,8,20]

height=0.4

convert x to indexes
xi=np.arange(len(x))

yticks
plt.yticks(ticks=xi,
labels=x)

Page of 8 18

limits plt.xlim(0,12) # set
plt.xlim() # get

plot(x, y, xlim = c(0,
12))
if plot already
xlim(c(0, 12))
get
par(‘xaxp’) # X-AXis
Parameters

text plt.text(…) # see
ax.text for syntax

annotate plt.annotate(…) # see
ax.annotate for syntax

Pie simple pie slices=[60,20,10]
labels=['60','20','10']

plt.pie(slices,
labels=labels)

slices <- c(60,20,10)
labels <-
c("60","20","10")

pie(slices,
labels=labels)

wedge properties plt.pie(…,wedgeprops={‘
edgecolor’:’white'})

pie(…, border="white")

slice colors colors=['#F51720','#FA2
6A0','#F8D210']

plt.pie(slices,
labels=labels,
colors=colors)

colors=c(‘#F51720’,’#FA
26A0','#F8D210')

pie(slices,
labels=labels,
col=colors)

explode explode=[0,0,0.5] # the
first two slices stay

plt.pie(…,
explode=explode)

Not convenient for
2D, have to use plotrix
for 3D and only explode
all slices

library(plotrix)
pie3D(slices,
labels=lbls,
explode=0.2,
col=colors)

Page of 9 18

shadow plt.pie(…, shadow=True)

startangle plt.pie(…,
startangle=20)

auto display the
percentage value
on each wedge
(slice)

plt.pie(…,
autopct='%.2f%%')

Stack
plot

simple stack plot days=[1,2,3,4,5]
task1=[7,6,5,3,0] # 8
hours
task2=[1,1,2,3,4]
task3=[0,1,1,2,4]

plt.stackplot(days,task
1, task2, task3)

use ggplot

colors colors=['#F51720','#FA2
6A0','#F8D210']
plt.stackplot(…,colors=
colors)

labels labels=['t1','t2','t3']
plt.stackplot(…,labels=
labels)

Histog
ram

simple histogram n=np.random.randint(1,1
0,20)
plt.hist(n)

n <- sample(1:9, 20,
replace=TRUE)
hist(n)

bins bins=[1,2,3,4,5,6,7,8,9
]
plt.hist(n,bins)

bins=c(1,2,3,4,5,6,7,8,
9)
hist(n, breaks = bins)

edge color plt.hist(n,edgecolor=‘r
ed')

hist(…, border=‘red’)

scale: log plt.hist(…,log=‘True’)

Page of 10 18

Vertical line plt.axvline(val,
color='red',
label='Median
age’,linewidth=3)

(x,y1) to (x,y2)
ax.vlines(x, y1, y2,
colors=‘red’)

or just plot a line
(x=3)
plt.plot([x]*len(y), y,
color="red")

abline(v = val, col =
"red", lwd = 3)

legend("topright",
legend="Median age",
col="red", lwd=3)

plot a line
x <- rep(3, length(y))
plot(x, y, type="l",
col=“red")

lines(rep(3, 100),
seq(0, 25,
length.out=100),
col=“red")

Horizontal line plt.axhline(y=0,
color=“red")

or
plt.plot(x, 0*x)

abline(h=0, col=“blue")

or
lines(x, 0*x,
col="red")

Scatte
r plot

simple scatter x=np.random.randint(0,1
0,10)
y=np.random.randint(0,1
0,10)
plt.scatter(x,y)

x <- sample(0:9, 10,
replace=TRUE)
y <- sample(0:9, 10,
replace=TRUE)

plot(x, y, pch=19)
size plt.scatter(…, s=600)

sizes=np.random.randint
(100,300,10)
plt.scatter(…, s=sizes)

plot(…, cex=5) # 5
times

sizes=sizes <-
sample(100:300, 10,
replace=TRUE)
plot(…, cex=sizes/100)

Page of 11 18

edgecolor, alpha,
color

plt.scatter(…,
edgecolor=‘black’,alpha
=0.8,c=‘red’)

colors=np.arange(10,20)
plt.scatter(…,c=colors)

linewidth plt.scatter(…,linewidth
=3)

marker plt.scatter(…,marker=‘X
’)

color bar plt.scatter(…,
c=colors, cmap=‘Reds')

plt.colorbar(label='deg
rees')

not support

Point plt.scatter(4, 5,
color=“red”)
or
plt.plot(4, 5, "ro")

plot(4, 5, col="red",
pch=19, cex=2)

if already plot, add
point
points(4, 5, col="red",
pch=19, cex=2)

Page of 12 18

Subplo
t

fig=plt.figure()
ax1=fig.add_subplot(2,2
,1)
ax2=fig.add_subplot(222
)

a=[1,2,3,4]
ax1.plot(a,’go—‘)

or
fig,
axes=plt.subplots(2,2)
ax1=axes[0,0]
ax1.plot(a,’go—')

arr <- c(1,2,3,4)
par(mfrow = c(2,2)) #
mfrow: multi-figure,
row-wise

1st subplot
plot(arr)

2nd subplot
plot(arr)

Add padding ax.margins(0.1, 0.1) # auto padding

auto adjust
plt.tight_layout()

value 0 to 1.0
(fraction of fig width
or height)
fig.subplots_adjust(lef
t=0.1,
bottom=0.5,right=0.2,to
p=1) # value 0.0 to 1.0

value 0 to 1.0
(fraction of subplot
width or height)
fig.subplots_adjust(wsp
ace=0.5,hspace=0.2)

auto adjust

5 lines for bottom, 4
lines for left, 3 lines
for top, and 2 lines
for right

par(mar = c(5, 4, 3,
2))

Adjust layout

Page of 13 18

tick locations
and labels for an
axis

ax.set_xticks([0,
500,1000])

ax.set_xticklabels(list
('abc'),rotation=45,
fontsize='x-large')

axis title ax.set_title('an
example')

axis label ax.set_xlabel('steps')

or use properties
to set tick,
ticklabel, title
and label

properties={
 'title': 'an
example',
 'xlabel':'steps',
 'xticks':
[0,500,1000],

‘xticklabels’:list(‘abc
')
}
ax.set(**properties)
ax.tick_params(axis='x'
, labelrotation=45,
labelsize=‘x-large')

limits (scale) ax.set_xlim([0,12])
ax.get_xlim()

size fig.set_size_inches(10,
5)
or
fig, ax =
plt.subplots(figsize=(1
0,5))

fig.get_size_inches()

Page of 14 18

set axis plt.axis([xmin, xmax,
ymin, ymax]) → manually
set limits

plt.axis("equal") →
equal aspect ratio for
x and y

plt.axis("auto") → let
Matplotlib decide
automatically

plt.axis("scaled") →
equal aspect ratio and
data fit nicely inside.

add axis ax=fig.add_axes([0.5,0.
1,0.5,0.4]) # left,
bottom, width, height
values from 0 to 1
relative to the whole
fig

ax.plot(data)

Page of 15 18

global config font_config={

'family':'monospace',
 'weight':'bold',
 'size':10
}
text={
 'color':'red'
}
runtime configuration
(rc)
plt.rc('font',**font_co
nfig)
plt.rc(‘text',**text)
for font, text,
lines, axes, xtick,
ytick, legend, figure
etc

Page of 16 18

text # plt has a text()
function, equivalent to
ax.text()
ax.text(x, y, “Text”)

for x in range(10):
ax.text(x,data[x],'%.2f
' % data[x],
family=‘monospace',font
size=10)

font properties
ax.text(x, y, “Text",
family=‘monospace’,
fontsize=12,
color="red",
ha="center",
va=“bottom”,
rotation=45,
bbox=dict(facecolor='ye
llow', alpha=0.5))

text(x, y, "Text", col
= "red", cex = 1.2, pos
= 4)

text(data,
 labels =
sprintf("%.2f", data),
 family = "mono",
 cex = 0.8, pos =
3)

annotate # plt has annotate too
ax.annotate(
 'hello',
 xy=(6,1),
 xytext=(6,5),

arrowprops=dict(facecol
or='red', headwidth=8,
headlength=4, width=2),
 ha='left', va='top'
)

arrows(6, 1.5, 6, 1,
col="red") # arrow
from (6,1.5) to (6,1)

text(6, 1.5, "hello")

Page of 17 18

TeensProgramming.com

draw shapes # 1
rect=plt.Rectangle((1,1
),2,1,color=‘k')
2
circle=plt.Circle((4,4)
,1,color=‘b')
3
polygon=plt.Polygon([[1
,4], [2,6],
[3,4]],color=‘g',alpha=
0.5)

ax=plt.gca() # get curr
axis

ax.add_patch(rect)
ax.add_patch(circle)
ax.add_patch(polygon)
plt has no add_patch
method

plot(0,0, type="n",
xlim=c(0,10),
ylim=c(0,10), asp=1)

1: xleft, ybottom,
xright, ytop
rect(1, 1, 1+2, 1+1,
col='red', border=NA)

2
symbols(4, 4,
circles=1,
inches=FALSE,
 add=TRUE,
bg=rgb(0,0,1,0.3))

3
polygon(c(1,2,3),
c(4,6,4),
col=rgb(0,1,0,0.5),
border=NA)

save fig to file fig.savefig(“plot.png")
svg, pdf etc

open device
png("plot.png")

plot(…)
must close device
dev.off()

Page of 18 18

