Feature

Numpy

import numpy as np

R

Random number

Uniform distribution
np.random.rand(4)
np.random.randint(1,5,2)
np.random.randint(1,5,size=(2,3))

Uniform distribution
runif(4)

sample(1:5, 2, replace = TRUE)

matrix(sample(1:5, 6, replace =

TRUE), 2, 3)

np.random.uniform(1,5,(2,3)) matrix(runif(6, min = 1, max = 5), 2, 3)

seed # seed

np.random.seed(100) set.seed(100)

Normal distribution # Normal distribution

np.random. randn(5) rnorm(5)
rnorm(5, mean = 10, sd = 2)

Create # 1d # 1d

np.array([1,2,3]) //or tuple a <- c(1,2,3)

2d # 2d

np.array([[1,2,3],[4,5,611) a <- rbind(c(1,2,3), c(4,5,6))

np.arange(1,7).reshape((2,3)) a <- matrix(1:6, nrow, ncol, byrow = T)
a <- array(1:6, dim = c(2,3))

#

a=np.arange(1,10) a=1:9

np.arange(1,10,2.5) seq(1,10,by=2.5)

np.arange(1,11).reshape(2,5)
np.linspace(1,10,6)

seq(1,10, length.out=6)

np.zeros(4) rep(0,4)
np.zeros((2,3)) matrix(oe,2,3)
np.ones((2,3)) matrix(1,2,3)
np.full((2,3),1) matrix(1,2,3)
np.eye(3) #eye means I (identity) |[diag(3)

Update (add)

np.append(a,10)
np.append(a, [20,30])
np.insert(a,1,40)

a <- c(a,10)
a <- c(a,20,30)
a <— append(a,40,after=1)

Page 1 of 18

Update alo]=100 alll<-100
al:2]1=100 all1:2]1<-100
a.astype(np.float64) as.double(a)

Query a.ndim length(dim(a))
a.shape dim(a)
a.size length(a)
a.dtype typeof(a)

Create boolean |a>=60 a >= 60

index (a>=60) & (a<=100) (a >= 60) & (a <= 100)
#
a.any() any(a)
a.all() all(a)

Indexing # 5 index types: #

1 normal index # 1

all] # second element/row

2 slicing
all:2]
al2:1]
al:9:2]

3 comma separated
alo,1] or al:,2]

4 boolean
allTrue, False, Truell

5 fancy

allo,2]]

pairwise index to select eles
alle,2],[3,4]]

scattered selection to select
rows and cols

alnp.ix_([0, 21, [3, 4])]

al2], al2,]

2 slicing

al2:31, al2:3,]

al3:1length(a)], al3:nrow(a),]
alseq(1,length(a),2)], alseq(1,nrow(a),by=2),]

3
al1,2]1, al,3]

4
alc(TRUE, FALSE, TRUE)]

#5

alc(1,3)]

pairwise index
alcbind(c(1,3),c(4,5))]
scattered selection
alc(1,3),c(4,5)]

Page 2 of 18

Set operations

s={1,1,2,2,3}

#

np.unique([1,1,2,2,3])
vs, cnts=np.unique(a,
return_counts=True)

#

b=np.isin(a, [3,4,6])
np.where(b) # find index
alb] # find values

unique(c(1,1,2,2,3))

#

t <- table(c(1,1,2,2,3))
vs <— names(t)

cnts <- as.vector(t)

#

b <- a %in% c(3,4,6)
which(b) # find index
alb] # find values

Dictionary d={‘a’:1, ‘b’:2, ‘c’':3} d=1list(a=1,b=2,c=3)
dl‘a’] dl[‘a’]]

Statistics a.min() min(a)
a.max(axis=1) apply(a,1,max)
a.sum() sum(a)
a.mean() mean(a), rowMeans(a)
a.cumsum() cumsum(as.vector(a))
a.argmax() # index of max ele which.max(a) # index of max ele
a.argmax(axis=0) # column-wise apply(a,2, which.max)
a.argmax(axis=1) # row-wise apply(a,1l, which.max)
ufunc (Universal functions)
np.sum(a) sum(a)
np.maximum(a,b) pmax(a,b)
np.sum([a,bl) sum(c(a,b))

Operations # +,—,%,/,%%, % # +,-,%,/,7,%%

axxk2
%2

an2

7%5%2

Page 3 of 18

Conditional
expression

X=[11213;4]

y=16,7,8,9]
condition=[True,False,True,Truel
np.where(condition, x,y)

#

np.where(a>10,10,0)
np.where(a>10,10,a)

x<-c(1,2,3,4)
y<-c(6,7,8,9)
condition=I[T,F,T,T]
ifelse(condition, x, y)
#

ifelse(a > 10, 10, 0)
ifelse(a > 10, 10, a)

if statement

condition <- c(TRUE, FALSE, TRUE, TRUE, FALSE)

1 <= c()
for (i in seq_along(condition)) {
if (condition[i]) {
1 <- c(1, x[i])
} else {
1 <= c(l, ylil)
}

¥

Page 4 of 18

stacking/concatenation

1d
a=np.array([1,1,1])
b=np.array([2,2,2])
by row
np.vstack((a,b)) # same as
np.row_stack((a,b))

by column
np.column_stack((a,b))

by concatenation
np.hstack((a,b)) # same as
np.concatenate((a,b))

2d
a=np.array([I[
b=np.array([I[
by row
np.vstack((a,b)) # same as
np.concatenate((a,b),axis=0)

1,1,1
3,3,3

by column
np.hstack([a,b]) # same as
np.concatenate((a,b),axis=1)

1d
a <-c(1,1,1)
b <- ¢(2,2,2)

by row
rbind(a, b)

by column
cbind(a, b)

by concatenation
c(a, b)

2d

a <- matrix(c(1,1,1,2,2,2), nrow=2,
by row=TRUE)

b <- matrix(c(3,3,3,4,4,4), nrow=2,
by row=TRUE)

by row
rbind(a, b)

by column
cbind(a, b)

split

equal split (horizontal)
np.hsplit(a,2)

or if array exact divisibility
np.split(a,2,axis=1)

equal split (vertical)
np.vsplit(a,?2)

or if array exact divisibility
np.split(a,2,axis=0)

not equal split
np.array_split(a,3,axis=1)

#

pl <- al, 1:floor(ncol(a)/2)]

p2 <- al, (floor(ncol(a)/2)+1):ncol(a)l
#

pl <- all:(nrow(a)/2), 1

p2 <- al(nrow(a)/2+1):nrow(a), |

#

cols <— split(l:ncol(a), cut(l:ncol(a), 3,
labels=FALSE))

parts <- lapply(cols, function(idx) al, idx,
drop=FALSE])

Page 5 of 18

Feature Ma}ﬂg})?tthb R base graphics | R grid graphics
matplotlipbl.tpyplot as + plotrlx (ggplot)
Show plt.show() # need for
plot pyCharm
Line simple line x=[1,2,3,4,5] x=c(1,2,3,4,5)

y=1[5,7,5,8,15]
plt.plot(x,y)

y=c(5,7,5,8,15)
plot(x,y,type=‘1")

labe'l

plt.plot(x,y, label="y")

no need

linewidth

plt.plot(x,y, linewidth=
3)

plot(x,y,type=‘1"', lwd=3
)
if plot second line
lines(x, yl, type="1")

marker, color and|plt.plot(x,y, 'or——") plot(x, vy,
line style type="b", # botn
points and lines
pCh=1, # circle
marker
col=" FEd", # red color
1ty=2) # dashed
line
legend plt.legend() legend(“topleft”,
legend=c("y",
Ilylll) ,
col=c("blue","red"),
lty=c(1,2))
plt.legend(loc=[1,0.02]
) # R base not support
loc=‘bottom left' ‘loc’
legend(x,Yy,..)
grid plt.grid(True) grid()

Page 6 of 18

style scheme

plt.style.available
plt.style.use(‘fivethir
tyeight’)

No style scheme

title

plt.title(‘rel x and
y')

plot(x,y,main="rel x
and y"”)

axis labels

plt.xlable(‘X")
plt.ylable(‘Y")

plot(x,y,xlab=‘X",ylab=
lYl)

scale plt.xscale('log') plot(x, y, log = "xy")
plt.yscale(‘log"')
Fill area plt.plot(x, y) plot(x, y, type = "1")

plt.fill_between(x, y)

same as
plt.fill_between(x, vy,
y2=0)

alpha
plt.fill_between(x, vy,
alpha=0.5)

for each condition,
set different colors
plt.plot(x, y)
y2=y.mean()

plt.fill_between(x, vy,
y2, where=(y>y2),
interpolate=True)

plt.fill_between(x, vy,
y2, where=(y<=y2),
interpolate=True)

polygon(c(x, rev(x)),
c(y, rep(0,
length(y))),
col = “blue")

#
plot(x, y, type = "1")

polygon(c(x, rev(x)),
c(y,
rep(y_mean,
length(y))),
col = “blue")

for each condition,
set different colors

No good support

step-like lines

plt.plot(x,
drawstyle='steps-post')

Page 7 of 18

Bar

simple bar x=[10,20,30,40,50] X <- c(10,20,30,40,50)
yl=[5,7,5,8,20] yl <- ¢(5,7,5,8,20)
plt.bar(x,yl)
barplot(names.arg=x,yl)
width plt.bar(x,yl,width=3)
label plt.bar(x,yl, label="y1"'

)

multiple bars

x=np.array([10,20,30,40
,50])

y1=[5,7,5,8,20]
y2=16,7,9,3,6]

width=3

plt.bar(x-w/
2,y1,width=w)
plt.bar(x+w/
2,y2,width=w)

X <- c(10,20,30,40,50)
yl <- ¢(5,7,5,8,20)
y2 <- ¢(6,7,9,3,6)

mat <- rbind(yl, y2)
barplot(mat,
names.arg=x,

beside=TRUE,

col=c("skyblue","orange

)

legend. text=c("y1","y2"
)

horizontal bar

w=3
plt.barh(x,yl,height=w)

barplot(.., horiz=TRUE,
)

tick locations
and labels

x=110,20,30,40,60]
y1=[5,7,5,8,20]

height=0.4

convert x to indexes
xi=np.arange(len(x))

yticks
plt.yticks(ticks=xi,
labels=x)

Page 8 of 18

limits plt.x1lim(0,12) # set plot(x, y, xlim = c(0,
plt.xlim() # get 12))
if plot already
xlim(c(@, 12))
get
par(‘xaxp’) # X-AXis
Parameters
text plt.text(..) # see
ax.text for syntax
annotate plt.annotate(..) # see
ax.annotate for syntax
Pie simple pie slices=[60,20,10] slices <- c(60,20,10)

labels=['60"','20','10"']

plt.pie(slices,
labels=1labels)

labels <-
C("6®" , II2®II , II10II)

pie(slices,
labels=1labels)

wedge properties

plt.pie(..,wedgeprops={‘
edgecolor’:'white'})

pie(.., border="white")

slice colors

colors=['#F51720"', '#FA2
6A0Q"', '#F8D210"']

plt.pie(slices,
labels=1labels,
colors=colors)

colors=c(‘#F51720', "#FA
26A0"', '#F8D210"')

pie(slices,
labels=1labels,
col=colors)

exp lode

explode=[0,0,0.5] # the
first two slices stay

plt.pie(..,
explode=explode)

Not convenient for
2D, have to use plotrix
for 3D and only explode
all slices

library(plotrix)
pie3D(slices,
labels=1bls,

exp lode=0.2,
col=colors)

Page 9 of 18

shadow plt.pie(.., shadow=True)

startangle plt.pie(..,
startangle=20)

auto display the |plt.pie(..,

percentage value
on each wedge
(slice)

autopct="'%.21%%")

Stack
plot

simple stack plot

days=I1,2,3,4,5]
task1l=[7,6,5,3,0] # 8
hours
task2=I[1,1,2,3,4]
task3=1[0,1,1,2,4]

plt.stackplot(days, task
1, task2, task3)

use ggplot

colors

colors=["#F51720"', '#FA2
6A0', '#F8D210"']
plt.stackplot(..,colors=
colors)

labels

labels=['t1','t2"',"t3"']
plt.stackplot(.., labels=
labels)

Histog
ram

simple histogram

n=np.random. randint(1,1
0,20)
plt.hist(n)

n <— sample(1:9, 20,
replace=TRUE)
hist(n)

bins

bins=[1,2,3,4,5,6,7,8,9
]
plt.hist(n,bins)

bins=c(1,2,3,4,5,6,7,8,
9)
hist(n, breaks = bins)

edge color

plt.hist(n,edgecolor="r
ed')

hist(.., border=‘red’)

scale: log

plt.hist(..,log=‘True’)

Page 10 of 18

Vertical line

plt.axvline(val,
color='red',
label="Median
age’, linewidth=3)

(x,yl) to (x,y2)
ax.vlines(x, yl, y2,
colors=‘red’)

or just plot a line
(x=3)
plt.plot([x]xlen(y), v,
color="red")

abline(v = val, col =
"red", lwd = 3)
legend("topright",
legend="Median age",
col="red", 1lwd=3)

plot a line

x <— rep(3, length(y))
plot(x, y, type="1",
col="red")

#

lines(rep(3, 100),
seq(@, 25,
length.out=100),
col="red")

Horizontal line

plt.axhline(y=0,
color="red")

or
plt.plot(x, 0%x)

abline(h=0, col=“blue")

or
lines(x, 0xx,
col="red")

Scatte
r plot

simple scatter

x=np.random.randint(0,1
0,10)
y=np.random.randint (0,1
0,10)

plt.scatter(x,y)

X <— sample(0:9, 10,
replace=TRUE)
y <- sample(0:9, 10,
replace=TRUE)

plot(x, y, pch=19)

size

plt.scatter(.., s=600)

#

sizes=np.random. randint
(100,300,10)
plt.scatter(.., s=sizes)

plot(.., cex=5) # 5
times

#

sizes=sizes <-—
sample(100:300, 10,
replace=TRUE)

plot(.., cex=sizes/100)

Page 11 of 18

edgecolor, alpha,
color

plt.scatter(..,
edgecolor=‘black’,alpha
=0.8,c="red’)

#
colors=np.arange(10,20)
plt.scatter(..,c=colors)

linewidth plt.scatter(.., linewidth
=3)
marker plt.scatter(..,marker='X
")
color bar plt.scatter(.., # not support

c=colors, cmap=‘Reds"')

plt.colorbar(label="deg
rees"')

Point

plt.scatter(4, 5,
color="red”)

or

plt.plot(4, 5, "ro")

plot(4, 5, col="red",
pch=19, cex=2)

if already plot, add
point

points(4, 5, col="red",
pch=19, cex=2)

Page 12 of 18

Subplo

fig=plt.figure()
ax1=fig.add_subplot(2,2
1)
ax2=fig.add_subplot (222
)

a=[112;3;4]
axl.plot(a, 'go—")

or

fig,
axes=plt.subplots(2,2)
axl=axes[0,0]
axl.plot(a, "go—")

arr <- c(1,2,3,4)
par(mfrow = c(2,2)) #
mfrow: multi-figure,
row-wise

1st subplot
plot(arr)

2nd subplot
plot(arr)

Add padding

ax.margins(0.1, 0.1)

auto padding

Adjust layout

1

wwwwww

auto adjust
plt.tight_layout()

value 0 to 1.0
(fraction of fig width
or height)
fig.subplots_adjust(lef
t=0.1,

bottom=0.5, right=0.2,to
p=1) # value 0.0 to 1.0

value 0 to 1.0
(fraction of subplot
width or height)
fig.subplots_adjust(wsp
ace=0.5,hspace=0.2)

auto adjust

5 lines for bottom, 4
lines for left, 3 lines
for top, and 2 lines
for right

par(mar = c(5, 4, 3,
2))

Page 13 of 18

tick locations ax.set_xticks([0,
and labels for an|500,1000])

axis
ax.set_xticklabels(list
('abc'),rotation=45,
fontsize='x-large"')

axis title ax.set_title('an
example')

axis label ax.set_xlabel('steps"')

or use properties|properties={

to set tick, "title': 'an

ticklabel, title |example',

and label 'xlabel':'steps’',
'xticks':

[0,500,1000],

‘xticklabels’:1list(‘abc
")

¥
ax.set (xxproperties)
ax.tick_params(axis="'x"
, labelrotation=45,
labelsize=‘x-large')

limits (scale) ax.set _xlim([0,12])
ax.get_xlim()

size fig.set_size_inches(10,
5)

or

fig, ax =
plt.subplots(figsize=(1
2,5))

#

fig.get_size_inches()

Page 14 of 18

set axis plt.axis([xmin, xmax,
ymin, ymax]) - manually
set limits

plt.axis("equal") -
equal aspect ratio for
X and y

plt.axis("auto") - let
Matplotlib decide
automatically

plt.axis("scaled") -
equal aspect ratio and
data fit nicely inside.

add axis ax=fig.add_axes([0.5,0.
1,0.5,0.4]) # left,
bottom, width, height
values from 0 to 1
relative to the whole
fig

ax.plot(data)

Page 15 of 18

global config font_config={

'family': 'monospace’,
‘'weight':'bold’,
'size':10

}

text={
'color':'red'

}

runtime configuration
(rc)
plt.rc('font',*xfont_co
nfig)
plt.rc(‘text',*xxtext)

for font, text,
lines, axes, xtick,
ytick, legend, figure
etc

Page 16 of 18

text

plt has a text()
function, equivalent to
ax.text()

ax.text(x, y, “Text”)

#

for x in range(10):
ax.text(x,datalx], '%.2f
' % datalx],
family="monospace’', font
size=10)

font properties
ax.text(x, y, “Text",
family='monospace’,
fontsize=12,
color="red",
ha="center",
va=“bottom”,
rotation=45,
bbox=dict(facecolor="ye
1low', alpha=0.5))

text(x, y, "Text", col
"red", cex = 1.2, pos
4)

#
text(data,
labels =
sprintf("%.2f", data),
family = "mono",
cex = 0.8, pos =
3)

annotate

plt has annotate too
ax.annotate(
'hello',
xy=(6,1),
xytext=(6,5),

arrowprops=dict(facecol
or="red', headwidth=8,
headlength=4, width=2),

ha='left', va='top'
)

arrows(6, 1.5, 6, 1,
col="red") # arrow
from (6,1.5) to (6,1)

text(6, 1.5, "hello")

Page 17 of 18

draw shapes

#1
rect=plt.Rectangle((1,1
),2,1,color=‘k")

2
circle=plt.Circle((4,4)
,1,color=‘b")

3
polygon=plt.Polygon([[1
74]; [216]7
[3,4]],color=‘g"',alpha=
0.5)

ax=plt.gca() # get curr
axis

ax.add_patch(rect)
ax.add_patch(circle)
ax.add_patch(polygon)
plt has no add_patch
method

plot(0,0, type="n",
x1lim=c(0,10),
ylim=c(0,10), asp=1)

1: xleft, ybottom,
xright, ytop

rect(1, 1, 1+2, 1+1,
col="red', border=NA)

2

symbols (4, 4,

circles=1,

inches=FALSE,
add=TRUE,

bg=rgb(0,0,1,0.3))

3
polygon(c(1,2,3),
c(4,6,4),
col=rgb(0,1,0,0.5),
border=NA)

save fig to file

fig.savefig(“plot.png")
svg, pdf etc

open device
png("plot.png")

#

plot(..)

must close device
dev.off()

TeensProgramming.com

Page 18 of 18

